Caffeine and Dobutamine Challenge Induces Bidirectional Ventricular Tachycardia in Normal Rats
Title
Date
Publisher
Subject
Caffeine
Dantrolene
Dobutamine
Ventricular arrhythmia
Language
Abstract
Background
Bidirectional ventricular tachycardia (BD-VT) is an intriguing arrhythmia, characterized by a beat-to-beat alternation of the QRS polarity on electrocardiogram. Currently there is no simple BD-VT animal model.
Objective
We report a simple animal model of BD-VT induced by caffeine and dobutamine (C+D) challenge in normal rats in which the arrhythmia can be attenuated by dantrolene (a ryanodine receptor stabilizer) treatment, but not by the pacemaker channel blocker ivabradine treatment.
Methods
Adult (4–5 months old) Sprague-Dawley rats (both sexes) were randomized into C+D (n = 8, received caffeine 120 mg/kg intraperitoneally [IP] and dobutamine 60 μg/kg IP, sequentially) and control (n = 8) groups. In addition, a group of 7 rats were pretreated with dantrolene (10 mg/kg, IP) 30 minutes before the C+D challenge and another group of 8 rats were pretreated with ivabradine (5 mg/kg, IP) 30 minutes before the C+D challenge.
Results
C+D challenge induced spontaneous premature ventricular contractions (PVCs) in 7 of 8 rats and BD-VT (lasted 4.3 ± 2.9 minutes, terminated spontaneously) in 6 of 8 (75%) rats. No ventricular arrhythmia was induced in the control group (P < .05 vs C+D group). Dantrolene treatment significantly decreased BD-VT (1 of 7 rats in the Dantrolene+C+D group vs 6 of 8 rats in C+D group, P < .05). Ivabradine treatment did not affect C+D-induced BD-VT (7 of 8 rats in the Ivabradine+C+D group vs 6 of 8 in the C+D group, P > .05).
Conclusion
Caffeine and dobutamine challenge induces BD-VT in a majority of normal rats. Stabilizing cardiac ryanodine receptors with dantrolene treatment can significantly decrease the occurrence of BD-VT, but pacemaker channel blocker ivabradine treatment does not have effect in this animal model.
Source
Rights
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |Format
Type
Identifier
Bibliographic Citation
Files
Collection
Citation
Position: 668 (15 views)