BNP as a New Biomarker of Cardiac Thyroid Hormone Function

Author(s)

Wang, K., Ojamaa, K., Samuels, A., Gilani, N., Zhang, K., An, S., Zhang, Y., Tang, Y.-D., Askari, B., & Gerdes, A. M.

Title

BNP as a New Biomarker of Cardiac Thyroid Hormone Function

Date

2020

Publisher

Frontiers Media SA

Subject

BNP
Physiology
Experimental pharmacology
T3
Gene expression
Heart failure
Hypothyroidism
Thyroid hormones

Language

English

Abstract

Background: Cardiac re-expression of fetal genes in patients with heart failure (HF) suggests the presence of low cardiac tissue thyroid hormone (TH) function. However, serum concentrations of T3 and T4 are often normal or subclinically low, necessitating an alternative serum biomarker for low cardiac TH function to guide treatment of these patients. The clinical literature suggests that serum Brain Natriuretic Peptide (BNP) levels are inversely associated with serum triiodo-L-thyronine (T3) levels. The objective of this study was to investigate BNP as a potential serum biomarker for TH function in the heart.

Methods: Two animal models of thyroid hormone deficiency: (1) 8-weeks of propyl thiouracil-induced hypothyroidism (Hypo) in adult female rats were subsequently treated with oral T3 (10 μg/kg/d) for 3, 6, or 14 days; (2) HF induced by coronary artery ligation (myocardial infarction, MI) in adult female rats was treated daily with low dose oral T3 (5 μg/kg/d) for 8 or 16 wks.

Results: Six days of T3 treatment of Hypo rats normalized most cardiac functional parameters. Serum levels of BNP increased 5-fold in Hypo rats, while T3 treatment normalized BNP by day 14, showing a significant inverse relationship between serum BNP and free or total T3 concentrations. Myocardial BNP mRNA was increased 2.5-fold in Hypo rats and its expression was decreased to normal values by 14 days of T3 treatment. Measurements of hemodynamic function showed significant dysfunction in MI rats after 16 weeks, with serum BNP increased by 4.5-fold and serum free and total T3 decreased significantly. Treatment with T3 decreased serum BNP while increasing total T3 indicating an inverse correlation between these two biologic factors (r2 = 0.676, p < 0.001). Myocardial BNP mRNA was increased 5-fold in MI rats which was significantly decreased by T3 over 8 to 16 week treatment periods.

Conclusions: Results from the two models of TH dysfunction confirmed an inverse relationship between tissue and serum T3 and BNP, such that the reduction in serum BNP could potentially be utilized to monitor efficacy and dosing of T3 treatment. Thus, serum BNP may serve as a reliable biomarker for cardiac TH function.

Source

Frontiers in Physiology, Volume 11, July 2020

Rights

Copyright © 2020 Wang, Ojamaa, Samuels, Gilani, Zhang, An, Zhang, Tang, Askari and Gerdes. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Format

PDF

Type

Text

Bibliographic Citation

Wang, K., Ojamaa, K., Samuels, A., Gilani, N., Zhang, K., An, S., Zhang, Y., Tang, Y.-D., Askari, B., & Gerdes, A. M. (2020). BNP as a New Biomarker of Cardiac Thyroid Hormone Function. In Frontiers in Physiology (Vol. 11). Frontiers Media SA. https://doi.org/10.3389/fphys.2020.00729

Files

fphys-11-00729.pdf

Citation

Wang, K., Ojamaa, K., Samuels, A., Gilani, N., Zhang, K., An, S., Zhang, Y., Tang, Y.-D., Askari, B., & Gerdes, A. M., BNP as a New Biomarker of Cardiac Thyroid Hormone Function. Frontiers in Physiology, Volume 11, July 2020, New York Tech Institutional Repository, accessed May 10, 2024, https://repository.nyitlibrary.org/items/show/3718

Position: 1305 (3 views)